Low-cost BYO Mass Storage Project

James Cizek

Unix Systems Manager

Academic Computing and Networking Services
The Problem

• Reduced Budget
• Storage needs growing
• Storage needs changing (Tiered Storage)
• Long term (Archiving) storage needs growing
Projected Needs (2009 Survey)

Research Data Storage Need (TBytes)

- Now: 219
- 2 Years: 1,384
- 5 Years: 4,914
The Goal

• Find a mass storage solution that won’t break the bank

• Vendors sell high-speed, costly systems (suitable for Amazon, Google, etc.), but we want slower, low-cost
 – Looking at vendor offerings, we decided to “roll our own”

• Maximize TB/$$ with reasonable assurance that data are redundant and safe
Some Understandings

• Approached this project as “Secondary” or “Tier 2” type storage, not intended to replace extremely fast, ultra-reliable, expensive disk systems
• Realized that device management, support, and component failure need to be addressed
A starting point

- Online backup company “Backblaze” open-sourced their storage pod design, see https://www.backblaze.com/petabytes-on-a-budget-how-to-build-cheap-cloud-storage.html
- Thought that starting with a proven design would eliminate many unknowns and speed up our design process
- Turned out to be helpful, but ran into many of our own headaches
The BackBlaze design
BackBlaze vs. CSU design goals

- Realized that the BackBlaze design didn’t exactly meet our requirements
- No redundant power supplies
- Cheap SATA cards didn’t take advantage of performance available by having large number of spinning hard drives
- Case too small to accommodate server-class motherboard
- Single “system” hard drive is single point of failure.
- Realized the need to over-engineer cooling and vibration reduction (2 major contributors to drive failure)
- Chassis was red instead of CSU green!
CSU design changes

- Lengthened case by 3 inches to accommodate dual CPU server-class motherboard
- Added more RAM for file system buffering (6 GB compared to BackBlaze 4GB)
- Added larger, redundant power supplies - individual supply can run entire case
- Used “Enterprise” grade drives instead of consumer grade, after much research
 - Drives selected have vibration sense / damping
- Replaced cheap SATA cards with high-performance PCI-e cards

March 24th, 2011

ISTec Research Data Management Workshop
CSU chassis nearing completion
CSU chassis nearing completion
DIY storage- V2.0

• As time progressed, CSU found a commercial offering that nearly replicates our “Green Box”
• Offered in 36 drive “smart” and 45 drive “dumb” models
• Price point equivalent to in-house unit
• New technology (SAS expander vs. SATA multiplier) offers twice the speed and far more flexibility (More OS choices, drive choices)
DYI storage- V2.0 (cont)

• Although dampens the “DIY” spirit of the project, the new chassis offers more reliability, expansion and speed than “Green box”
• Still functionally identical, but can be built from “opening the box” to “installed in rack” in 2 hours!
• Allows multiple hosts to access simultaneously (i.e. Windows, Unix)
CSU – Commercial Chassis
CSU Commercial Chassis
CSU Commercial Chassis
Costs (Greenbox V1.0)

- Case: $700
- 1 TB Drives: $99 x 45 ($4,455)
- Motherboard / Processors / Memory: $900
- Power Supplies: $200
- SATA cards: $300
- Ethernet card with iSCSI offload: $350
- SATA Multipliers: $45 x 9 ($405)
- Fans/Cables/Hardware/DVD/Mounts/etc.: $1,000

Total: 45 Raw TB for $8,310!
Costs (Silverbox V2.0)

• Case: $3600 (includes MB, memory, etc..)
• 2 TB Drives: $189 x 36 ($6,804)

• Total: 72 Raw TB for $10,404!
Initial Performance

✓ Indicates that these units will be more than adequate as secondary and long term storage

✓ May be fast enough to replace expensive primary storage in the future (Lot of spindles)

✓ Has proven expandability is easy and cost effective
Cost / Performance Comparison

• As primary storage: Current models ~$25K for 1 Terabyte

• As secondary storage: Current models ~$8K for 16 Terabytes

• Our system: 72 Terabytes for ~$10K
 – In initial performance testing, our system beats the best published performance numbers of both our primary and secondary storage systems
Challenges ahead

• Support management (What happens when a disk fails?)
• Backup and protection of stored data
 – Mirroring units
 – Avoid backing up to enterprise backup system
• Data storage and protection policies
• Parallel file system
Where will this be useful?

- Library digital repository
- Research computing
- HPC, tier 2
- Campus wide “Cloud” storage
- Second or Third Tier storage for your Enterprise backups
- Email/File archiving
- Database “snapshots” kept for long term (LMS)
In Summary

- At $139 / Terabyte, this solution provides mass storage cheaper than anything found to date
- Low price allows building 2 and mirroring (Much less expensive than tape backup!)
- Space, power, and cooling savings are substantial over other offerings
- Provides a simple solution to allow *all* research data to be kept from a project instead of discarding portions
- Flexible enough to fit many applications where large data storage is a necessity
- Reusable! After project completion, can be reconfigured to fit needs “on the fly”
Questions?

• james@colostate.edu