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Adopted

Susceptible

1. Social Sensors influence each other over a network
2. Social Sensors have dynamics: learn from past 

decisions and decisions of others
3. Social Sensors reveal quantized decisions (privacy) 

and are ordinal.
4. Social sensors go beyond physical sensors.

Sensor-Adaptive Signal Processing

Statistical signal processing: Extract signal from noise

Noise

Signal

Sensor
Signal Processing

Estimate

Sensor-Adaptive Signal Processing: Dynamically manage sensor
resources.

Noise

Signal

Sensor
Signal Processing

Estimate

Feedback (Stochastic Control)

How can sensors autonomously manage their behavior?

local utility
ordinal 
decision
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Part 1.  How do agents learn from 
observations and actions of other agents?
Social Learning: Herds and Data incest occur.   

Part 2. How does information propagate in 
a large scale social network? Mean Field 
Dynamics of sensing over a random graph.

MIS-INFORMATION MANAGEMENT PROBLEM

The benchmark protocol:

Estimate x with prior π0 subject to:
⎧

⎨

⎩

Gk = (Vk,Ek) assumed known.
z⌊s,k⌋ = H⌊s,k⌋x+v⌊s,k⌋,
µ⌊s,k⌋ = F (Zts(Gk),z⌊s,k⌋),

The estimation problem:

Estimate x with prior π0 subject to:
⎧

⎨

⎩

Gk = (Vk,Ek) assumed known.
z⌊s,k⌋ = H⌊s,k⌋x+v⌊s,k⌋,
θ⌊s,k⌋ = A (Θas(Gk),z⌊s,k⌋)

1 Existence Problem: Under what
conditions, can algorithm A able to
completely remove mis-information?

2 Design Problem: How can we design
algorithm A such that θ⌊s,k⌋ = µ⌊s,k⌋.

3 Reconstruction Problem: If the
information flow graph (delays), Gk, is
not completely known at each time, how
to design algorithm A to mitigate
mis-information propagation?

Abusive re-use of information
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Unifying Theme: Interaction of dynamical sensors
Interaction of local and global decision makers.

Non-standard information patterns.



PART 1: SOCIAL LEARNING FOR SENSING
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psychology, economics, sociology (groupthink), 
computer science, signal processing
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OUTLINE for Part 1
• Bayesian model for Social Learning
• Global Sensing with Social Learning
• Data Incest in Social Learning
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Examples:  
•sentiment sensing in microblogs
•High Frequency Trading [Quant Finance]

local utility
local

 action

Sensor Bayesian
Filter

yk
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πk

u = 1
u = 2
Unstructured Policy µ∗(π)
Montone Policy µ∗(π)

π =

⎡
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π(1) = P (x = e1|Yk)
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π(3) = P (x = e3|Yk)
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P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak) and obs yk+1

• Local action: ak+1 = f(yk+1, πk)

• πk+1 = P (x|a1, . . . , ak+1) ∝
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The social sensor
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Some perspective on “vanilla” social learning ...

The social sensor



1.1 GLOBAL SENSING WITH SOCIAL LEARNING

5

Examples:  
•sentiment sensing in microblogs
•High Frequency Trading [Quant Finance]

local utility
local

 action

Sensor Bayesian
Filter

yk

uk

πk

u = 1
u = 2
Unstructured Policy µ∗(π)
Montone Policy µ∗(π)

π =

⎡

⎣

π(1) = P (x = e1|Yk)
π(2) = P (x = e2|Yk)
π(3) = P (x = e3|Yk)

⎤

⎦

∑

i

π(i) = 1, π(i) ≥ 0

⎡

⎣

1
0
0

⎤

⎦ ,

⎡

⎣

0
1
0

⎤

⎦ ,

⎡

⎣

0
0
1

⎤

⎦

e1 e2 e3

= argmin E{c(x, a)|a1, . . . , ak, yk+1}

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak) and obs yk+1

• Local action: ak+1 = f(yk+1, πk)

• πk+1 = P (x|a1, . . . , ak+1) ∝
∑

y P (ak+1|y, πk)P (y|x)πk

1

yk

uk

πk

u = 1
u = 2
Unstructured Policy µ∗(π)
Montone Policy µ∗(π)

π =

⎡

⎣

π(1) = P (x = e1|Yk)
π(2) = P (x = e2|Yk)
π(3) = P (x = e3|Yk)

⎤

⎦

∑

i

π(i) = 1, π(i) ≥ 0

⎡

⎣

1
0
0

⎤

⎦ ,

⎡

⎣

0
1
0

⎤

⎦ ,

⎡

⎣

0
0
1

⎤

⎦

e1 e2 e3

= argmin E{c(x, a)|a1, . . . , ak, yk+1}

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak) and obs yk+1

• Local action: ak+1 = f(yk+1, πk)

• πk+1 = P (x|a1, . . . , ak+1) ∝
∑

y P (ak+1|y, πk)P (y|x)πk

1

xk

yk

uk {stop, continue}
πk

u = 1
u = 2
Unstructured Policy µ∗(π)
Montone Policy µ∗(π)

π =

⎡

⎣

π(1) = P (x = e1|Yk)
π(2) = P (x = e2|Yk)
π(3) = P (x = e3|Yk)

⎤

⎦

∑

i

π(i) = 1, π(i) ≥ 0

⎡

⎣

1
0
0

⎤

⎦ ,

⎡

⎣

0
1
0

⎤

⎦ ,

⎡

⎣

0
0
1

⎤

⎦

e1 e2 e3

= argmin E{c(x, a)|a1, . . . , ak, yk+1}

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak) and obs yk+1

• Local action: ak+1 = f(yk+1, πk)

• πk+1 = P (x|a1, . . . , ak+1) ∝
∑

y P (ak+1|y, πk)P (y|x)πk

1

state

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model

Agents k = 1, 2, . . . act sequentially to estimate x ∈ {1, 2, . . . , X}.
x ∼ π0 (random variable).

• If ak = yk, standard POMDP

• “Social learning filter” T πk−1 discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

y1

y2

y3 a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak)
and observation yk+1.

• Agent k + 1: picks local action ak+1 = f(yk+1, πk)
ak+1 = argmina∈A E{c(x, a)|a1, . . . , ak, yk+1}

• Broadcast local action

• Other agents update public belief
πk+1 = P (x|a1, . . . , ak+1) ∝

∑

y P (ak+1|y, πk)P (y|x)πk

10−15

α(µ): frac of sensors choosing u = high res

Theorem:[Bikchandani, J. Political Economy, 1992; Cover & Hellman, 1970]: Agents
eventually choose same action (information cascade): Social learning stops, i.e. ∃k∗

such that πk = constant for k ≥ k∗

uk ∈ { reveal obs, reveal action}

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

Utility u =

{

low res reward = 0

high res reward = cx + f(α)

5 × 10−9 m

2

state

agent agent agent
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Examples:  
•sentiment sensing in microblogs
•High Frequency Trading [Quant Finance]
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A. The Multi-agent Social Learning Model

Agents k = 1, 2, . . . act sequentially to estimate x ∈ {1, 2, . . . , X}.
x ∼ π0 (random variable).

• If ak = yk, standard POMDP

• “Social learning filter” T πk−1 discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].
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Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.
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1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak)
and observation yk+1.

• Agent k + 1: picks local action ak+1 = f(yk+1, πk)
ak+1 = argmina∈A E{c(x, a)|a1, . . . , ak, yk+1}

• Broadcast local action

• Other agents update public belief
πk+1 = P (x|a1, . . . , ak+1) ∝

∑

y P (ak+1|y, πk)P (y|x)πk

10−15

α(µ): frac of sensors choosing u = high res

Theorem:[Bikchandani, J. Political Economy, 1992; Cover & Hellman, 1970]: Agents
eventually choose same action (information cascade): Social learning stops, i.e. ∃k∗

such that πk = constant for k ≥ k∗

uk ∈ { reveal obs, reveal action}

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

Utility u =

{

low res reward = 0

high res reward = cx + f(α)

5 × 10−9 m
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A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

{1, 2, , . . . , A} denote the local decision agent k takes. Define the sigma algebras:

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [?], [?] comprises of the following ingredients:
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graphs are considered amongst agents.
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Examples:  
•sentiment sensing in microblogs
•High Frequency Trading [Quant Finance]
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A. The Multi-agent Social Learning Model

Agents k = 1, 2, . . . act sequentially to estimate x ∈ {1, 2, . . . , X}.
x ∼ π0 (random variable).

• If ak = yk, standard POMDP

• “Social learning filter” T πk−1 discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

y1

y2

y3 a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.
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graphs are considered amongst agents.
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P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak)
and observation yk+1.

• Agent k + 1: picks local action ak+1 = f(yk+1, πk)
ak+1 = argmina∈A E{c(x, a)|a1, . . . , ak, yk+1}

• Broadcast local action

• Other agents update public belief
πk+1 = P (x|a1, . . . , ak+1) ∝

∑

y P (ak+1|y, πk)P (y|x)πk

10−15

α(µ): frac of sensors choosing u = high res

Theorem:[Bikchandani, J. Political Economy, 1992; Cover & Hellman, 1970]: Agents
eventually choose same action (information cascade): Social learning stops, i.e. ∃k∗

such that πk = constant for k ≥ k∗

uk ∈ { reveal obs, reveal action}

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

Utility u =

{

low res reward = 0

high res reward = cx + f(α)

5 × 10−9 m

2
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agent agent agent
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A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

{1, 2, , . . . , A} denote the local decision agent k takes. Define the sigma algebras:

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [?], [?] comprises of the following ingredients:

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

{1, 2, , . . . , A} denote the local decision agent k takes. Define the sigma algebras:

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [?], [?] comprises of the following ingredients:

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

{1, 2, , . . . , A} denote the local decision agent k takes. Define the sigma algebras:

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [?], [?] comprises of the following ingredients:

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

y1

y2

y3 a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

y1

y2

y3 a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

y1

y2

y3 a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model

x ∼ π0 (random variable).

• If ak = yk, standard POMDP

• “Social learning filter” T πk−1 discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

y1

y2

y3 a1

a2

a3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

ak = yk

⇥k(j) ⌅
⇧

yk

P (ak|yk, ⇥k�1)P (yk|xk = j)

� ⌥⌃  
P (ak|⇥k�1,xk)

⇧

i

P (xk = j|xk�1 = i)⇥k�1(i)

Theorem: [Bhikchandani, J. Political Economy, 1992; Cover & Hellman, 1970].
Agents eventually choose same action (information cascade, herd).
Social learning stops w.p.1 for finite k.

ak = f(⇥k�1, yk) = arg mina E⇥k�1{c(xk, a)}
⇥k(i) = P (xk = i|a1, . . . , ak), i = 1, 2.

uk ⇧ {continue, stop}
y = 1
y = 2
e1 e2 e3

⇥k(1)

u = 1
u = 2

V (⇥) = min

⇤
c⇤2⇥ + ⇤

⇧

a

V (T ⇥(⇥, a))⌅(⇥, a), c⇤1⇥

⌅

µ⇥(⇥) = arg min
u⇧{1,2}

{·}

Result: Suppose c1 and c2 ⇤ i, P = I, B symmetric. Then µ⇥0(⇥) satisfies

• For ⇥ ⇧ P1 ⌃ P3, V (⇥) = min{ c02⇥
1�⇤ , c⇤1⇥} ⇤ ⇥

So up to one threshold on P1 ⌃ P3.

• For ⇥ ⇧ P2a, and ⇥ ⇧ P2b, V (⇥) is piecewise linear and concave. So up to one threshold
in each of P2a and P2b.

Quickest Detection: Suppose P � =
�
1 0
� 1� �

⇥
, c1 = [0, f ]⇤ c2 = [d, 0]⇤.

Vµ⇤0
(⇥) ⇥ Vµ⇤� (⇥) +

2⇤

(1� ⇤)2
⌥C(⇥, u)⌥⌅ sup

i
⌥[P � � P 0]ij R⇥

a⌥1

1

Acemoglu & Ozdaglar [2010,...]: General communication graphs.
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A. The Multi-agent Social Learning Model

Agents k = 1, 2, . . . act sequentially to estimate x ∈ {1, 2, . . . , X}.
x ∼ π0 (random variable).

• If ak = yk, standard POMDP

• “Social learning filter” T πk−1 discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].
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Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1
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Social Learning: Given prior πk = P (x|a1, . . . , ak)
and observation yk+1.
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ak+1 = argmina∈A E{c(x, a)|a1, . . . , ak, yk+1}

• Broadcast local action

• Other agents update public belief
πk+1 = P (x|a1, . . . , ak+1) ∝

∑

y P (ak+1|y, πk)P (y|x)πk

10−15

α(µ): frac of sensors choosing u = high res

Theorem:[Bikchandani, J. Political Economy, 1992; Cover & Hellman, 1970]: Agents
eventually choose same action (information cascade): Social learning stops, i.e. ∃k∗

such that πk = constant for k ≥ k∗

uk ∈ { reveal obs, reveal action}

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

Utility u =

{

low res reward = 0

high res reward = cx + f(α)
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A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].

k = 1

k = 2

k = 3

Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

{1, 2, , . . . , A} denote the local decision agent k takes. Define the sigma algebras:

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [?], [?] comprises of the following ingredients:
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•When I see others taking umbrellas, I take an 
umbrella without checking the weather forecast. I 
assume their private info is accurate. . Rational Herds

from a finite set

(ordinal decision)

The social sensor



1.1 GLOBAL SENSING WITH SOCIAL LEARNING

5

Examples:  
•sentiment sensing in microblogs
•High Frequency Trading [Quant Finance]
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A. The Multi-agent Social Learning Model

Agents k = 1, 2, . . . act sequentially to estimate x ∈ {1, 2, . . . , X}.
x ∼ π0 (random variable).

• If ak = yk, standard POMDP

• “Social learning filter” T πk−1 discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].
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Consider a countably infinite number of agents1 performing social learning to estimate an

underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

This work was partially supported by NSERC.

V. Krishnamurthy is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver,

V6T 1Z4, Canada. (email: vikramk@ece.ubc.ca).
1As mentioned earlier, the same setup holds if a finite number of agents are polled repeatedly in some pre-defined order,

providing each agent picks its local decision based on the most recent public belief. In [?], [?], [?] more general communication

graphs are considered amongst agents.

January 3, 2012 DRAFT

P (ak+1|x, πk)

a ∈ {red,green}

Standard Bayesian: Given prior πk = P (x|y1, . . . , yk) and observation yk+1

πk+1 = P (x|y1, . . . , yk+1) ∝ P (yk+1|x)πk

Social Learning: Given prior πk = P (x|a1, . . . , ak)
and observation yk+1.

• Agent k + 1: picks local action ak+1 = f(yk+1, πk)
ak+1 = argmina∈A E{c(x, a)|a1, . . . , ak, yk+1}

• Broadcast local action

• Other agents update public belief
πk+1 = P (x|a1, . . . , ak+1) ∝

∑

y P (ak+1|y, πk)P (y|x)πk

10−15

α(µ): frac of sensors choosing u = high res

Theorem:[Bikchandani, J. Political Economy, 1992; Cover & Hellman, 1970]: Agents
eventually choose same action (information cascade): Social learning stops, i.e. ∃k∗

such that πk = constant for k ≥ k∗

uk ∈ { reveal obs, reveal action}

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

Utility u =

{

low res reward = 0

high res reward = cx + f(α)

5 × 10−9 m

2

state

agent agent agent

1

Quickest Time Detection with Phase-Type

Change Distribution and Social Learning
Vikram Krishnamurthy Fellow, IEEE

A. The Multi-agent Social Learning Model
• If ak = yk, standard POMDP

• Public belief update discontinuous in π.

• P = I , then information cascade occurs. [Bikhchandani, 1992].
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underlying state process x. Each agent acts once in a predetermined sequential order indexed by

k = 1, 2, . . .. The index k can also be viewed as the discrete time instant when agent k acts.

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private) observation of agent k and ak ∈ A =

{1, 2, , . . . , A} denote the local decision agent k takes. Define the sigma algebras:

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [?], [?] comprises of the following ingredients:
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P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.
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Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies montone
likelihood ratio dominance, then µ∗(π, y) is threshold in π.
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},

Classical: Given posterior πk = P (τ0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

Classical: Given posterior πk = P (change|y1, . . . , yk):
Optimal decision policy is threshold. [Shiriyaev 1950s].

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Take action greedily to minimize cost
ak = argmina Eπ,y(c(x, a)}

• Update public belief πk = P (x|a1, . . . , ak)

Posterior πk−1 = P (τ0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)
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• Agent k receives observation yk

• Updates πk = P (τ0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

2

Define ⇤k(xk) = P (xk|y1

, . . . , yk) = T (⇤k�1

, yk) (nonlinear filter update)

Su�cient conditions for
Z

[cx + f(�(x))]⇤k(x)dx ⇤ yk, ⇤k�1

• cx + f(�(x)) ⇤ x

• T (⇤, y) monotone-likelihood ratio increasing in y, ⇤ [Whitt,1984].

P (xk+1

|xk) and P (yk|xk)
are TP2 kernels [Karlin & Rinott, 1980]

⇥ = (dimer/monomer, anti-body/target)
FreeEnergy

, C = conductance

conc
(x

1

, x
2

, x
3

)

�(µ) ⇧ [0, 1]: frac of sensors choosing u = high res

(⇥, C)

Broadcasts action ak.

µ⇤(⇤k�1

, yk) = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

µ⇤(⇤k�1

, yk) ⇧ { yk|{z}
socialistic

,min
a

E�k�1,yk{c(x, a)
| {z }

capitalistic ak

} = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

Social Learning: Public belief ⇤k�1

= P (change|a
1

, . . . , ak�1

).

• Agent k: Observes yk ⇥ P (y|x)

• Broadcasts action ak = arg mina E{c(state, a)|a
1

, . . . , ak�1

, yk}.

• Other agents update public belief

⇤k = P (change|a
1

, . . . , ak) ⌅
X

y

P (ak|y,⇤k�1

)P (y|x)� (·)

1

(social learning filter)

predictor 
update

Example: Multiagent Quickest Change Detection
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P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

decision

posterior probability of change
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policydecision

posterior probability of change

declare change
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decision

posterior probability of change

declare change

no change
policy

global
decision

posterior probability of change
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When should global decision-maker declare change?

multi-threshold

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies montone
likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ0

B2(·) k > τ0
, where τ0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize E
µ
π0{d|τ − τ0|+

︸ ︷︷ ︸

delay

+ f I(τ < τ0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

Classical: Given posterior πk = P (change|y1, . . . , yk):
Optimal decision policy is threshold. [Shiriyaev 1950s].

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Take action greedily to minimize cost
ak = argmina Eπ,y(c(x, a)}

• Update public belief πk = P (x|a1, . . . , ak)

Posterior πk−1 = P (τ0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

2

Define ⇤k(xk) = P (xk|y1

, . . . , yk) = T (⇤k�1

, yk) (nonlinear filter update)

Su�cient conditions for
Z

[cx + f(�(x))]⇤k(x)dx ⇤ yk, ⇤k�1

• cx + f(�(x)) ⇤ x

• T (⇤, y) monotone-likelihood ratio increasing in y, ⇤ [Whitt,1984].

P (xk+1

|xk) and P (yk|xk)
are TP2 kernels [Karlin & Rinott, 1980]

⇥ = (dimer/monomer, anti-body/target)
FreeEnergy

, C = conductance

conc
(x

1

, x
2

, x
3

)

�(µ) ⇧ [0, 1]: frac of sensors choosing u = high res

(⇥, C)

Broadcasts action ak.

µ⇤(⇤k�1

, yk) = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

µ⇤(⇤k�1

, yk) ⇧ { yk|{z}
socialistic

,min
a

E�k�1,yk{c(x, a)
| {z }

capitalistic ak

} = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

Social Learning: Public belief ⇤k�1

= P (change|a
1

, . . . , ak�1

).

• Agent k: Observes yk ⇥ P (y|x)

• Broadcasts action ak = arg mina E{c(state, a)|a
1

, . . . , ak�1

, yk}.

• Other agents update public belief

⇤k = P (change|a
1

, . . . , ak) ⌅
X

y

P (ak|y,⇤k�1

)P (y|x)� (·)

1

(social learning filter)

predictor 
update

Example: Multiagent Quickest Change Detection
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P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

decision

posterior probability of change

declare change
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posterior probability of change

declare change
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posterior probability of change

declare change

no change
policy

global
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When should global decision-maker declare change?

multi-threshold

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies montone
likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ0

B2(·) k > τ0
, where τ0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize E
µ
π0{d|τ − τ0|+

︸ ︷︷ ︸

delay

+ f I(τ < τ0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

Classical: Given posterior πk = P (change|y1, . . . , yk):
Optimal decision policy is threshold. [Shiriyaev 1950s].

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Take action greedily to minimize cost
ak = argmina Eπ,y(c(x, a)}

• Update public belief πk = P (x|a1, . . . , ak)

Posterior πk−1 = P (τ0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

2

Define ⇤k(xk) = P (xk|y1

, . . . , yk) = T (⇤k�1

, yk) (nonlinear filter update)

Su�cient conditions for
Z

[cx + f(�(x))]⇤k(x)dx ⇤ yk, ⇤k�1

• cx + f(�(x)) ⇤ x

• T (⇤, y) monotone-likelihood ratio increasing in y, ⇤ [Whitt,1984].

P (xk+1

|xk) and P (yk|xk)
are TP2 kernels [Karlin & Rinott, 1980]

⇥ = (dimer/monomer, anti-body/target)
FreeEnergy

, C = conductance

conc
(x

1

, x
2

, x
3

)

�(µ) ⇧ [0, 1]: frac of sensors choosing u = high res

(⇥, C)

Broadcasts action ak.

µ⇤(⇤k�1

, yk) = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

µ⇤(⇤k�1

, yk) ⇧ { yk|{z}
socialistic

,min
a

E�k�1,yk{c(x, a)
| {z }

capitalistic ak

} = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

Social Learning: Public belief ⇤k�1

= P (change|a
1

, . . . , ak�1

).

• Agent k: Observes yk ⇥ P (y|x)

• Broadcasts action ak = arg mina E{c(state, a)|a
1

, . . . , ak�1

, yk}.

• Other agents update public belief

⇤k = P (change|a
1

, . . . , ak) ⌅
X

y

P (ak|y,⇤k�1

)P (y|x)� (·)

1
.Stopping set is non-convex

(social learning filter)

predictor 
update

Example: Multiagent Quickest Change Detection
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P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.
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Summary: Global Decision making using local
decisions is non-monotone!

global
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posterior probability of change
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When should global decision-maker declare change?

multi-threshold

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies montone
likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ0

B2(·) k > τ0
, where τ0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize E
µ
π0{d|τ − τ0|+

︸ ︷︷ ︸

delay

+ f I(τ < τ0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

Classical: Given posterior πk = P (change|y1, . . . , yk):
Optimal decision policy is threshold. [Shiriyaev 1950s].

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Take action greedily to minimize cost
ak = argmina Eπ,y(c(x, a)}

• Update public belief πk = P (x|a1, . . . , ak)

Posterior πk−1 = P (τ0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

2

Define ⇤k(xk) = P (xk|y1

, . . . , yk) = T (⇤k�1

, yk) (nonlinear filter update)

Su�cient conditions for
Z

[cx + f(�(x))]⇤k(x)dx ⇤ yk, ⇤k�1

• cx + f(�(x)) ⇤ x

• T (⇤, y) monotone-likelihood ratio increasing in y, ⇤ [Whitt,1984].

P (xk+1

|xk) and P (yk|xk)
are TP2 kernels [Karlin & Rinott, 1980]

⇥ = (dimer/monomer, anti-body/target)
FreeEnergy

, C = conductance

conc
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3

)

�(µ) ⇧ [0, 1]: frac of sensors choosing u = high res

(⇥, C)

Broadcasts action ak.

µ⇤(⇤k�1

, yk) = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

µ⇤(⇤k�1

, yk) ⇧ { yk|{z}
socialistic

,min
a

E�k�1,yk{c(x, a)
| {z }

capitalistic ak

} = arg min
µ

E{
1X

k=1

c(xk, µ(⇤k�1

, yk))}

Social Learning: Public belief ⇤k�1

= P (change|a
1

, . . . , ak�1

).

• Agent k: Observes yk ⇥ P (y|x)

• Broadcasts action ak = arg mina E{c(state, a)|a
1

, . . . , ak�1

, yk}.

• Other agents update public belief

⇤k = P (change|a
1

, . . . , ak) ⌅
X

y

P (ak|y,⇤k�1

)P (y|x)� (·)

1

(social learning filter)

predictor 
update

Example: Multiagent Quickest Change Detection
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π(1)

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my

action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1
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Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my

action provides useful information to subsequent agents

Each agent chooses action by minimizing social welfare cost:

ak = µ∗(πk−1, yk) where µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1
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Benevolent agents choose local decision by minimizing social welfare cost:
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tractable.
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• Global decision policy: Initially socialistic then capitalistic. 
•Privacy vs Reputation

 Can show: [IEEE Trans. Info. Theory, 2011]

• Under supermodular assumptions global decision policy is threshold.

P (x = 1|a1, a2, y3) ⌅ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

yk ⇤
(

B1(·) k ⇥ ⇥ 0

B2(·) k > ⇥ 0
, change time ⇥ 0 ⇤ geometric distribution

Minimize Eµ
�0
{d|⇥ � ⇥ 0|+| {z }

delay

+ f I(⇥ < ⇥ 0)| {z }
false-alarm

}, ⇥ = announce change time

Classical: Agents k = 1, 2, . . . share observations {yk}
or posterior P (⇥ 0 ⇥ k|y1, . . . , yk).

Aim: Agents k = 1, 2, . . . act sequentially To estimate x ⇤ �0.
Protocol: Given public belief �k�1 = P (x|a1, . . . , ak�1)

• Agent k observes yk ⇤ p(y|x)

• Takes action greedily to minimize cost ak = arg mina E�k�1,yk
{c(x, a)}

• Other agents update public belief �k = P (x|a1, . . . , ak).

How to compute social welfare optimal policy µ⇤(�, y)?

Averaging theory: Dynamics of agents are a di�erential inclusion

drl

dt
⇧

X

x�l

�l(i,x�l)[ul(j,x�l)� ul(i,x�l)� rl

Converges to set of correlated equilibria Ce – Blackwell approachability.
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Linear MLR Increasing Policy

µ

✓

(⇡) =

(
1 if ✓0⇡ < 0

2 otherwise

Compute min
✓

µ

✓

: µ
✓

" L(e
X

) and L(e
1

): via stochastic gradient algorithm.
e

1

e

2

e

3

a

k

= min
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E
⇡k�1,yk{c(x, a)} = min

a
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0
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k�1
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Aim: Compute optimal policy
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Compute optimal social welfare policy:
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⇤ = argmin
µ
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= µ(⇡
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), ⇡
k+1

= social filter(⇡
k
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Incest Removal Framework
1. If public belief is ⇡

n� = P (x|a
m

,m 2 F
n

} (incest free),
then Bayesian update by agent is incest free.

2. Agent has access to {a
m

,m 2 H
n

} and not {a
m

,m 2 F
n

}

Incest Removal Protocol
Step 1: log ⇡

n�(i) / [log ⇡
1

(i), . . . , log ⇡
n�1

(i)]w
n

where w

n

= T

�1

n�1

t

n

.
Step 2: Necessary and su�cient condition for exact incest removal:

A

n

(j, n) = 0 =) w

n

= 0

H
7

= {1, 5, 6}, F
7

= {1, 2, 3, 4, 5, 6}

In above example
w

7

= T

�1

6

t

7

=
⇥�1 0 0 0 1 1

⇤0

So exact incest removal possible

Social Sensing Model:
(i) Underlying Markov state ✓

n

⇠ I +Q/N .

(ii) N agents. Agent i state x

(i)

n

2 {infected, succeptible}.
(iii) Social Network Di↵usion Dynamics:

1
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Interactive Sensing in Social Networks
Vikram Krishnamurthy, Fellow, IEEE, H. Vincent Poor, Fellow, IEEE

Abstract—This paper presents models and algorithms for
interactive sensing in social networks where individuals
act as sensors and the information exchange between
individuals is exploited to optimize sensing. Social learning
is used to model the interaction between individuals that
aim to estimate an underlying state of nature. In this
context the following questions are addressed: How can self-
interested agents that interact via social learning achieve a
tradeoff between individual privacy and reputation of the
social group? How can protocols be designed to prevent
data incest in online reputation blogs where individuals
make recommendations? How can sensing by individuals
that interact with each other be used by a global decision
maker to detect changes in the underlying state of nature?
When individual agents possess limited sensing, compu-
tation and communication capabilities, can a network of
agents achieve sophisticated global behavior? Social and
game theoretic learning are natural settings for addressing
these questions. This article presents an overview, insights
and discussion of social learning models in the context of
data incest propagation, change detection and coordination
of decision making.
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Fig. 1. Example of information flow network with S = 2 two agents,
namely s 2 {1, 2} and time points k = 1, 2, 3. Circles represent the
nodes indexed by n = s + S(k � 1) in the social network and each
edge depicts a communication link between two nodes.
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I. INTRODUCTION AND MOTIVATION

The proliferation of social media such as real time
microblogging services (Twitter1), online reputation and
rating systems (YELP) together with app-enabled smart-
phones, facilitate real time sensing of social activities,
social patterns and behavior.

Social sensing, also called participatory sensing [?],
[?], [?], [?], is defined as a process where physical
sensors present in mobile devices such as GPS are used
to infer social relationships and human activities. In this
paper, we work at a higher level of abstraction. We use
the term social sensor or human-based sensor to denote
an agent that provides information about its environment
(state of nature) on a social network after interaction with
other agents. Examples of such social sensors include
Twitter posts, Facebook status updates, and ratings on
online reputation systems like YELP and Tripadvisor.
Such social sensors go beyond physical sensors for social
sensing. For example [?], user opinions/ratings (such as
the quality of a restaurant) are available on Tripadvisor
but are difficult to measure via physical sensors. Simi-
larly, future situations revealed by the Facebook status of
a user are impossible to predict using physical sensors.

Statistical inference using social sensors is relevant
in a variety of applications including localizing special
events for targeted advertising [?], [?], marketing [?],
localization of natural disasters [?] and predicting sen-
timent of investors in financial markets [?], [?]. It is
demonstrated in [?] that models built from the rate of
tweets for particular products can outperform market-
based predictors. However, social sensors present unique
challenges from a statistical estimation point of view.
First, social sensors interact with and influence other
social sensors. For example, ratings posted on online
reputation systems strongly influence the behaviour of
individuals.2 Such interacting sensing can result in non-
standard information patterns due to correlations intro-
duced by the structure of the underlying social network.
Second, due to privacy reasons and time-constraints,

1On US Presidential election day in 2012, there were 15 thousand
tweets per second resulting in 500 million tweets in the day. Twitter
can be considered as a real time sensor.

2It is reported in [?] that 81% of hotel managers regularly check
Tripadvisor reviews. [?] reports that a one-star increase in the Yelp
rating maps to 5-9 % revenue increase.

Data incest results in overconfidence in estimate 
•How to build unbiased reputation system?
•One-star increase in the Yelp rating maps to 5-9 % 
revenue increase.[Harvard Business School, 2011]

Borkar & Varaiya:1982
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I. INTRODUCTION AND MOTIVATION

The proliferation of social media such as real time
microblogging services (Twitter1), online reputation and
rating systems (YELP) together with app-enabled smart-
phones, facilitate real time sensing of social activities,
social patterns and behavior.

Social sensing, also called participatory sensing [?],
[?], [?], [?], is defined as a process where physical
sensors present in mobile devices such as GPS are used
to infer social relationships and human activities. In this
paper, we work at a higher level of abstraction. We use
the term social sensor or human-based sensor to denote
an agent that provides information about its environment
(state of nature) on a social network after interaction with
other agents. Examples of such social sensors include
Twitter posts, Facebook status updates, and ratings on
online reputation systems like YELP and Tripadvisor.
Such social sensors go beyond physical sensors for social
sensing. For example [?], user opinions/ratings (such as
the quality of a restaurant) are available on Tripadvisor
but are difficult to measure via physical sensors. Simi-
larly, future situations revealed by the Facebook status of
a user are impossible to predict using physical sensors.

Statistical inference using social sensors is relevant
in a variety of applications including localizing special
events for targeted advertising [?], [?], marketing [?],
localization of natural disasters [?] and predicting sen-
timent of investors in financial markets [?], [?]. It is
demonstrated in [?] that models built from the rate of
tweets for particular products can outperform market-
based predictors. However, social sensors present unique
challenges from a statistical estimation point of view.
First, social sensors interact with and influence other
social sensors. For example, ratings posted on online
reputation systems strongly influence the behaviour of
individuals.2 Such interacting sensing can result in non-
standard information patterns due to correlations intro-
duced by the structure of the underlying social network.
Second, due to privacy reasons and time-constraints,

1On US Presidential election day in 2012, there were 15 thousand
tweets per second resulting in 500 million tweets in the day. Twitter
can be considered as a real time sensor.

2It is reported in [?] that 81% of hotel managers regularly check
Tripadvisor reviews. [?] reports that a one-star increase in the Yelp
rating maps to 5-9 % revenue increase.

Data incest results in overconfidence in estimate 
•How to build unbiased reputation system?
•One-star increase in the Yelp rating maps to 5-9 % 
revenue increase.[Harvard Business School, 2011]

2. Coherent Risk Measures instead of expected value.

Borkar & Varaiya:1982
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Abstract—This paper presents models and algorithms for
interactive sensing in social networks where individuals
act as sensors and the information exchange between
individuals is exploited to optimize sensing. Social learning
is used to model the interaction between individuals that
aim to estimate an underlying state of nature. In this
context the following questions are addressed: How can self-
interested agents that interact via social learning achieve a
tradeoff between individual privacy and reputation of the
social group? How can protocols be designed to prevent
data incest in online reputation blogs where individuals
make recommendations? How can sensing by individuals
that interact with each other be used by a global decision
maker to detect changes in the underlying state of nature?
When individual agents possess limited sensing, compu-
tation and communication capabilities, can a network of
agents achieve sophisticated global behavior? Social and
game theoretic learning are natural settings for addressing
these questions. This article presents an overview, insights
and discussion of social learning models in the context of
data incest propagation, change detection and coordination
of decision making.
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Fig. 1. Example of information flow network with S = 2 two agents,
namely s 2 {1, 2} and time points k = 1, 2, 3. Circles represent the
nodes indexed by n = s + S(k � 1) in the social network and each
edge depicts a communication link between two nodes.
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I. INTRODUCTION AND MOTIVATION

The proliferation of social media such as real time
microblogging services (Twitter1), online reputation and
rating systems (YELP) together with app-enabled smart-
phones, facilitate real time sensing of social activities,
social patterns and behavior.

Social sensing, also called participatory sensing [?],
[?], [?], [?], is defined as a process where physical
sensors present in mobile devices such as GPS are used
to infer social relationships and human activities. In this
paper, we work at a higher level of abstraction. We use
the term social sensor or human-based sensor to denote
an agent that provides information about its environment
(state of nature) on a social network after interaction with
other agents. Examples of such social sensors include
Twitter posts, Facebook status updates, and ratings on
online reputation systems like YELP and Tripadvisor.
Such social sensors go beyond physical sensors for social
sensing. For example [?], user opinions/ratings (such as
the quality of a restaurant) are available on Tripadvisor
but are difficult to measure via physical sensors. Simi-
larly, future situations revealed by the Facebook status of
a user are impossible to predict using physical sensors.

Statistical inference using social sensors is relevant
in a variety of applications including localizing special
events for targeted advertising [?], [?], marketing [?],
localization of natural disasters [?] and predicting sen-
timent of investors in financial markets [?], [?]. It is
demonstrated in [?] that models built from the rate of
tweets for particular products can outperform market-
based predictors. However, social sensors present unique
challenges from a statistical estimation point of view.
First, social sensors interact with and influence other
social sensors. For example, ratings posted on online
reputation systems strongly influence the behaviour of
individuals.2 Such interacting sensing can result in non-
standard information patterns due to correlations intro-
duced by the structure of the underlying social network.
Second, due to privacy reasons and time-constraints,

1On US Presidential election day in 2012, there were 15 thousand
tweets per second resulting in 500 million tweets in the day. Twitter
can be considered as a real time sensor.

2It is reported in [?] that 81% of hotel managers regularly check
Tripadvisor reviews. [?] reports that a one-star increase in the Yelp
rating maps to 5-9 % revenue increase.

Data incest results in overconfidence in estimate 
•How to build unbiased reputation system?
•One-star increase in the Yelp rating maps to 5-9 % 
revenue increase.[Harvard Business School, 2011]

2. Coherent Risk Measures instead of expected value.
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A = {1(buy), 2(sell)} to myopically minimize its cost.
Let c(i, a) denote the cost incurred if the agent takes
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6. Market Observer’s Action: The market observer (se-

curities dealer) seeks to achieve quickest detection by
balancing delay with false alarm. At each time k, the
market observer chooses action4 u

k

as

u
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2 U = {1(stop), 2(continue)} (9)

Here ‘Stop’ indicates that the value has changed and the
dealer incorporates this information before selling new
issues to investors. The formulation presented considers
a general parametrization of the costs associated with
detection delay and false alarm costs. Define
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where f = (f1, . . . , fX) and it is chosen with in-
creasing elements, so that states further from ‘1’ incur
higher penalties. Clearly, f1 = 0.

ii) Cost of delay: A delay cost is incurred when the event
{x
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= 1, u
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= 2} occurs, i.e, even though the state
changed at k, the market observer fails to identify the
change. The expected delay cost is
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where d > 0 is the delay cost and e1 denotes the unit
vector with 1 in the first position.

B. Market Observer’s Objective

The market maker chooses its action as
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4It is important to distinguish between the decisions a
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of the agents and
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k

of the market maker. Clearly the decisions a
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affect the choice of u
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will be made precise below.

Example: (Rockafellar & Uryasev, 2000)

• Decisions are ordinal in belief and observation
• Risk averse agents herd more frequently at cheaper costs 

and therefore compromise state estimate.
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act as sensors and the information exchange between
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aim to estimate an underlying state of nature. In this
context the following questions are addressed: How can self-
interested agents that interact via social learning achieve a
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social group? How can protocols be designed to prevent
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that interact with each other be used by a global decision
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When individual agents possess limited sensing, compu-
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Fig. 1. Example of information flow network with S = 2 two agents,
namely s 2 {1, 2} and time points k = 1, 2, 3. Circles represent the
nodes indexed by n = s + S(k � 1) in the social network and each
edge depicts a communication link between two nodes.
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I. INTRODUCTION AND MOTIVATION

The proliferation of social media such as real time
microblogging services (Twitter1), online reputation and
rating systems (YELP) together with app-enabled smart-
phones, facilitate real time sensing of social activities,
social patterns and behavior.

Social sensing, also called participatory sensing [?],
[?], [?], [?], is defined as a process where physical
sensors present in mobile devices such as GPS are used
to infer social relationships and human activities. In this
paper, we work at a higher level of abstraction. We use
the term social sensor or human-based sensor to denote
an agent that provides information about its environment
(state of nature) on a social network after interaction with
other agents. Examples of such social sensors include
Twitter posts, Facebook status updates, and ratings on
online reputation systems like YELP and Tripadvisor.
Such social sensors go beyond physical sensors for social
sensing. For example [?], user opinions/ratings (such as
the quality of a restaurant) are available on Tripadvisor
but are difficult to measure via physical sensors. Simi-
larly, future situations revealed by the Facebook status of
a user are impossible to predict using physical sensors.

Statistical inference using social sensors is relevant
in a variety of applications including localizing special
events for targeted advertising [?], [?], marketing [?],
localization of natural disasters [?] and predicting sen-
timent of investors in financial markets [?], [?]. It is
demonstrated in [?] that models built from the rate of
tweets for particular products can outperform market-
based predictors. However, social sensors present unique
challenges from a statistical estimation point of view.
First, social sensors interact with and influence other
social sensors. For example, ratings posted on online
reputation systems strongly influence the behaviour of
individuals.2 Such interacting sensing can result in non-
standard information patterns due to correlations intro-
duced by the structure of the underlying social network.
Second, due to privacy reasons and time-constraints,

1On US Presidential election day in 2012, there were 15 thousand
tweets per second resulting in 500 million tweets in the day. Twitter
can be considered as a real time sensor.

2It is reported in [?] that 81% of hotel managers regularly check
Tripadvisor reviews. [?] reports that a one-star increase in the Yelp
rating maps to 5-9 % revenue increase.

Data incest results in overconfidence in estimate 
•How to build unbiased reputation system?
•One-star increase in the Yelp rating maps to 5-9 % 
revenue increase.[Harvard Business School, 2011]

2. Coherent Risk Measures instead of expected value.

Borkar & Varaiya:1982

3. Experimental Data: Collaboration with Department of Psychology UBC. In 
perceptual tasks, data incest patterns occurred 79% and caused individuals to 
modify actions 21% of the time.

4. Human Interpretation of Data: Should two security guards look at one TV 
monitor and then discuss suspicious behavior? (with data incest and herding)

5. In which order should a panel of experts be polled? 
[Ottaviani & Sorenson, 2001]
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For 94% of problems, the group’s final 
answer was the first answer suggested, and 
people with dominant personalities tend to 

speak first and most forcefully...
Anderson & Kilduff, Berkeley Hass School, 2009.

Ottaviani, Sorensen, 2001. Information Aggregation in Debate: Who should speak first?
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Social learning can result in herding and 
information cascades. Individuals end up 
blindly imitating others.  Groupthink

•Group behavior may not be wise.
•Crowds reduce diversity & are misleading

Data incest results in bias
Datasets are non-informative.

In complex settings, herding can result in interesting behavior:
Nobody goes there anymore … it is always too crowded (Yogi Berra)

Rational inattention models (Sims):  ability of the human to 
absorb information is modeled via the information theoretic 
capacity of a communication channel  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II. SOCIAL SENSING OF DIFFUSION MECHANISM

In this section, the network structure is defined together with the diffusion mechanism. Furthermore, the mean-

field approximation is also provided in the form of a discrete-time difference equation. Finally, the social sensing

mechanism is described as a noisy measurement of the rate of adoption in the network. This sets up a filtering

problem whose solution is outlined in the Sec. III.

A. Diffusion Mechanism

Let N be a finite but large set of nodes (or agents) in a network G. We assume that only agents connected with

one another via links can communicate with one another. More specifically, each node only interacts with its fixed

group of neighbors N with which it maintains direct connections.

In such a network, the population is large and the pattern of interactions between agents is a complex process

depending on various parameters. We assume that network structure is also complex and is described only by its

large-scale statistical properties, viz, its degree distribution. The degree distribution p() is the fraction of agents

in the network that have exactly  direct neighbors. Equivalently, the degree distribution p() also denotes the

probability than an agent chosen uniformly at random has degree .

Assume that there is a new technology product in the market. We investigate its spreading amongst the network

population N . Each agent i 2 N can exist in one of two discrete states si 2 S = {0, 1}. The state si = 0 is

analogous to a susceptible (S) state in the SIS model described in Sec. I. In this state, the agent has the potential

to adopt the technology. The state si = 1 denotes an “infected” state in which the agent has chosen to adopt the
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Let N be a finite but large set of nodes (or agents) in a network G. We assume that only agents connected with

one another via links can communicate with one another. More specifically, each node only interacts with its fixed

group of neighbors N with which it maintains direct connections.

In such a network, the population is large and the pattern of interactions between agents is a complex process

depending on various parameters. We assume that network structure is also complex and is described only by its
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• Expectation Polling: who do you think will win?
Intuitively: expectation polling is more accurate. 
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• Intent Polling:  who will you vote for?
• Expectation Polling: who do you think will win?
Intuitively: expectation polling is more accurate. 

weight samples inversely proportional to their degree - then unbiased

• Mean number of friends are smaller than mean number of friend of 
friends (Feld 1991 - friendship paradox). 

• Respondent Driven Sampling:  snowball MCMC sampling method 
for marginalized populations in social networks.

US Centers for Disease Control and Prevention:  HIV drug users.
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Part 1. Social Learning. Learn from observations, past 
decisions and others [Psychology, Economics, CS,EE]
Herding and Data Incest yield non-informative datasets.

This presentation is highly simplified and omits several 
important areas:
Dynamic Coherent Risk Measures
Homophily vs Contagion
Dynamics of viral marketing:
Revealed Preferences: Are humans utility maximizers?
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MIS-INFORMATION MANAGEMENT PROBLEM

The benchmark protocol:

Estimate x with prior π0 subject to:
⎧

⎨

⎩

Gk = (Vk,Ek) assumed known.
z⌊s,k⌋ = H⌊s,k⌋x+v⌊s,k⌋,
µ⌊s,k⌋ = F (Zts(Gk),z⌊s,k⌋),

The estimation problem:

Estimate x with prior π0 subject to:
⎧

⎨

⎩

Gk = (Vk,Ek) assumed known.
z⌊s,k⌋ = H⌊s,k⌋x+v⌊s,k⌋,
θ⌊s,k⌋ = A (Θas(Gk),z⌊s,k⌋)

1 Existence Problem: Under what
conditions, can algorithm A able to
completely remove mis-information?

2 Design Problem: How can we design
algorithm A such that θ⌊s,k⌋ = µ⌊s,k⌋.

3 Reconstruction Problem: If the
information flow graph (delays), Gk, is
not completely known at each time, how
to design algorithm A to mitigate
mis-information propagation?

Abusive re-use of information
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Part 2. Diffusion in Large Scale Networks.
Mean field dynamics: infected degree distribution satisfies 
differential equation 
Sampling: Expectation Polling, Respondent Driven Sampling
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Fig. 1. An illustration of the diffusion of technology adoption over a social network
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B. Literature Survey

C. Main Results

II. SOCIAL SENSING OF DIFFUSION MECHANISM
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problem whose solution is outlined in the Sec. III.
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