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|. Social Sensors influence each other over a network

2. Social Sensors have dynamics: learn from past
decisions and decisions of others

3. Social Sensors reveal quantized decisions (privacy)
and are ordinal.

4. Social sensors go beyond physical sensors.
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Dynamics of sensing over a random graph.
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Unifying Theme: Interaction of dynamical sensors

Interaction of local and global decision makers.
Non-standard information patterns.




PART 1: SOCIAL LEARNING FOR SENSING

Raffonal Herds el %e;nrning.fror:l Cthe Bflhavior of Others: Conformity, Fads, and
:‘wm THE WISDOM nformational Cascades
0 b C R 0 WD S Sushil Bikhchandani, David Hirshleifer and Ivo Welch

The Journal of Economic Perspectives

JAMES Vol. 12, No. 3 (Summer, 1998), pp. 151-170

psychology, economics, sociology (groupthink),
computer science, signal processing

OUTLINE for Part |
® Bayesian model for Social Learning
® Global Sensing with Social Learning
® Data Incest in Social Learning
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Some perspective on “vanilla” social learning ...
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Examples:
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< local  ®High Frequency Trading [Quant Finance]
action

Agents k= 1,2, ... act sequentially to estimate = € {1,2,..., X }. state

Social Learning: Given prior m, = P(z|ay, ..., ay) S 7To trandom variable)

and observation yj;. from a finite set lyl y2 l s

e Agent k + 1: picks local action ax+1 = f(yki1, 7x)

. a3
Ap+1 = argimin, - ]E{C(.CE', a)]al, ey Qe yk:—|—1} @ @ ageﬂt

e Broadcast local action (ordinal decision)

Rational Herds

e Other agents update public belief i~ =5

_ THE WISDOM
T = P(x|ay, ..., a511) X P(agi1|y, m) P(y|x)my

" (] 1) o 3o, Plarsly, m) P(y|x) A B

Theorem: [Bhikchandani, J. Political Economy, 1992; Cover & Hellman, 1970]@}3)» i) JAMES
Agents eventually choose same action (information cascade, herd). e el SUROWIECKI

Social learning stops w.p.1 for finite k. = oL N

Acemoglu & Ozdaglar [2010,...]: General communication graphs.
5




1.1 GLOBAL SENSING WITH SOCIAL LEARNING

e sentiment sensing In microblogs
local  ®High Frequency Trading [Quant Finance]

state

T ~ 7o andom variable)
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% lecneor — BaFﬁfn _ The social sensor
Examples:
local upility
=
action
Agents k= 1,2, ... act sequentially to estimate = € {1,2,..., X }.
Social Learning: Given prior m, = P(z|ay, ..., ay)
and observation yj;. from a finite set lyl
e Agent k + 1: picks local action agi1 = f(yrr1, 7x)
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e Broadcast local action (ordinal decision)

e Other agents update public belief
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*When | see others taking umbrellas, | take an

umbrella without checking the weather forecast. |

assume their private info is accurate. :
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Yk - Tk :
% lecneor — B?ﬁfn _ The social sensor
Examples:
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action

Agents k= 1,2, ... act sequentially to estimate = € {1,2,..., X }. state
Social Learning: Given prior m, = P(z|ay, ..., ay) T~ (random variable)
and observation yj;. from a finite set lyl lyQ l s

e Agent k + 1: picks local action a1 = f(yrr1, 7x) t
c N
e Broadcast local action (ordinal decision)

Rational Herds
Economc Models |

e Other agents update public belief e

Ter1 = Pxfay, ..., agg1) < Do, Plagialy, me) Pyl)m, ToHFE CV:IOSV?SQVI

B -

In 1995, management gurus Treacy & Wiersema secretly bought L‘m“‘ i} suégm ,EESCK,

50,000 copies of their own book. Made NY times best seller list. """ ey
How to cope with malicious agents? )




Social learning results in herding.

QIl. How do Local and Global Agents Interact in
decision making?

. . . THINKING,
Q2. How to optimize Social Learning to delay

herding? FAST ... S LOW
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i )
Q3. How to price a product! i
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. Bl() k S 7-0 0 . .
Observations v, ~ ,» Where 7" = change time (usually geometric)
BQ(> k>t
. : N 0+ 0
Aim: Compute time T to annouce change: Minimize Ef {d|r —7"|" + fI(r < 77)}
delay false-alarm

Classical: Given posterior 7, = P(change|yi, ..., yx):
Optimal decision policy is threshold. [Shiriyaev 1950s].

a0 e ‘ declare change

Social Learning: Public belief m;_1 = P(change|ay,...,arx_1).
o Agent k: Observes yj ~ P(y| x) posterior probability of change >
e Broadcasts action ay = arg min, E{c(state,a)|a1,...,ax_1,yx } C/)\Q
e Other agents update public belief (social learning filter)
7 = P(change|a,...,ax) x ZP(ak,\y,wk_l) (y|z) x gre Aggce)r ® é)/‘o
When should global decision-maker declare change? ., declare change
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o« o c S policy
Summary: Global Decision making using local no change
decisions is non-monotone! multi-threshold
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Social Learning: Choose local decision greedily: a; = min, E,, , ,. {c(x,a)}.
Results in herding. Posterior 7, = P(x|ay, ..., ax) freezes.
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Results in herding. Posterior 7, = P(x|ay, ..., ax) freezes.
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Partially Observed Stochastic Control Problem. k=1



Q2: HoOw TO OPTIMIZE SOCIAL LEARNING?

Social Learning: Choose local decision greedily: a;y = min, E;, , ,. {c(x,a)}.
Results in herding. Posterior 7, = P(x|ay, ..., ax) freezes.

Socialistic Learning: [More Sophisticated Protocol] To estimate x ~ m

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

N
ar = 1 (mr_1,yx) € {yx(reveal), ar_q(herd)}, u* = arg mjn Eﬁo{z c(z,ar)}
k=1

Can show: [IEEE Trans. Info. Theory, 201 1]
* Under supermodular assumptions global decision policy is threshold.

herd
reveal

posterior probability of state | 7-((1)

>
>

* Global decision policy: Initially socialistic then capitalistic.
*Privacy vs Reputation
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C B Fach Sale to a customer
® Brings in money

SOCIAL ® (Customers perform social learning
T “ h on the product
ps Ty How should the product price be
_* * ﬁ“’ﬂ”ﬁ”ﬂ’#ﬂ’ chosen over time?
customers

Optimal Pricing for Monopolist.  Choose price u, = pu(mi_1)

o
Monopolist reward: ~Compute: sup J,(7) = E‘;{Z p*11(ax = buy) ui}
H k=1

Agent: Yk~ p(:[x), x ~ mo.

. /
dix = argmin, Ca,uk,ykﬂ-k—l

Public belief: T — T(?Tk_l, ak)

“"Optimal soln’: Price high initially; build elite customer base; then gradually
decrease prices. 9
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DISCUSSION

FOR PART 1: SOCIAL LEARNING

1. Data Incest + Herding in social learning over general graphs

Borkar & Varaiya: 1982

Data incest results in overconfidence in estimate
eHow to build unbiased reputation system?

eOne-star increase in the Yelp rating maps to 5-9 %
revenue increase.[Harvard Business School, 2011]
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DISCUSSION FOR PART 1: SOCIAL LEARNING

1. Data Incest + Herding in social learning over general graphs
Borkar & Varaiya: 1982

Data incest results in overconfidence in estimate
eHow to build unbiased reputation system?

eOne-star increase in the Yelp rating maps to 5-9 %
O, ~(4) >(8) @ revenue increase.[Harvard Business School, 2011]

2. Coherent Risk Measures instead of expected value.
ap = argming Er, ., {c(z,a)} == ap =argminR,,_, . {c(z,a)}

Example: ar = argmin{CVaR,(c(zg,a))} (Rockafellar & Uryasev, 2000)
acA

® Decisions are ordinal in belief and observation
® Risk averse agents herd more frequently at cheaper costs
and therefore compromise state estimate.



DISCUSSION FOR PART 1: SOCIAL LEARNING

1. Data Incest + Herding in social learning over general graphs
Borkar & Varaiya: 1982

Data incest results in overconfidence in estimate
eHow to build unbiased reputation system?

/ eOne-star increase in the Yelp rating maps to 5-9 %

revenue increase.[Harvard Business School, 2011]

2. Coherent Risk Measures instead of expected value.

3. Experimental Data: Collaboration with Department of Psychology UBC. In
perceptual tasks, data incest patterns occurred 79% and caused individuals to
modify actions 21% of the time.

4. Human Interpretation of Data: Should two security guards look at one TV
monitor and then discuss suspicious behavior? (with data incest and herding)

5. In which order should a panel of experts be polled?
[Ottaviani & Sorenson, 2001]

UBC
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Ottaviani, Sorensen, 2001. Information Aggregation in Debate: Who should speak first? o
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SUMMARY OF PART 1

Social learning can result in herding and
information cascades. Individuals end up L S T
blindly imitating others. Groupthink THE WISDOM

OF CROWDS
*Group behavior may not be wise. JAMES
*Crowds reduce diversity & are misleading SUROWIECKI

Data incest results in bias

Datasets are non-informative.

Rational inattention models (Sims): ability of the human to
absorb information is modeled via the information theoretic
capacity of a communication channel




SUMMARY OF PART 1

Social learning can result in herding and
iInformation cascades. Individuals end up

blindly imitating others. Groupthink THE WISDOM
OF CROWDS
*Group behavior may not be wise. JAMES
*Crowds reduce diversity & are misleading SUROWIECKI
P OL oSS 203

Data incest results in bias
Datasets are non-informative.

Rational inattention models (Sims): ability of the human to
absorb information is modeled via the information theoretic
capacity of a communication channel

In complex settings, herding can result in interesting behavior:
Nobody goes there anymore ... it is always too crowded (Yogi Be
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PART 2: INFORMATION DIFFUSION IN SOCIAL

SOCIAL AND Rational Herds

Ecomomic Models

ECONOMIC of Seclal Laseateg
NETWORKS

Matthew O Jacksdn =

interacting
social
sensor

Twitter mood predicts stock market, J. Computational Sci, 2011.

53% of people on Twitter recommend companies/products in
tweets; 48% delivering on their intention to buy the product. ROI
Research for Performance, 2010.

Consumer reviews are trusted nearly 12 times more than
descriptions from manufacturers. eMarketer, 2010.

my Yearbook: 81% of respondents recede advice from friends
related to product purchase, 74% found advice to be influential in

decision to buy. ClickZ, 2010.
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PART 2: INFORMATION DIFFUSION IN SOCIAL

SOCIAL AND Rational Herds
ECONOMIC
NETWORKS

social
sensor

OUTLINE for Part 2 (very brief)
® Mean Field Dynamics for Sentiment

® How to Sample Social Network!?

interacting

estimator

NETWORKS

N\

/Sampled infected agentm

A

J

Markov state 0,
sentiment
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estimator

Sampled infected agents

How to build a tractable model *
for information flow in large scale

social networks to estimate

sentiment?

Markov state 0,,
sentiment



MEAN FIELD DYNAMICS FOR SENSING

Information diffusion in random graph is asymptotically
equivalent to ordinary differential (difference) equation.
Estimating sentiment is a Bayesian filtering problem

dp(k
estimator % = F(P(k), ,O(k—)7 975)7 0 ~ Q
fraction of infected nodes of degree k ¢
Sampled infected agents Measurement process: Y; = / A(0r)dt + wy
0

* sampling network

Markov state 0,
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Information diffusion in random graph is asymptotically
equivalent to ordinary differential (difference) equation.
Estimating sentiment is a Bayesian filtering problem

estimator

Sampled infected agents

A

Markov state 0,, <—
sentiment

fraction of infected nodes of degree k

t
Measurement process: Y; = / A(0r)dt + wy
0
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MEAN FIELD DYNAMICS FOR SENSING

Information diffusion in random graph is asymptotically
equivalent to ordinary differential (difference) equation.
Estimating sentiment is a Bayesian filtering problem

dp(k
estimator % = F(P(k), ,O(k—)a et)a 0 ~ Q
fraction of infected nodes of degree k "
Sampled infected agents Measurement process: Y; = / A(0r)dt + wy
* sampling network 0
References:

e Benaim, Econometrica, 2003

e Pastor-Satorrras, Epidemic spreading in scale free
networks, Physical Review Letters, 2001

e D. Lopez-Pintado, Diffusion in complex social
networks, Games & Economic Behavior, 2008.

e Sun, Modeling Contagion Through Facebook News
Feed, AAAI Conf Social Media, 2009

e Sakaki, Earthquake shakes twitter users: Real time

Markov state 0,, <— event detection using social sensors, 2010.

sentiment
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How ToO SAMPLE SOCIAL NETWORK

® |[ntent Polling: who will you vote for?
® Expectation Polling: who do you think will win?
Intuitively: expectation polling is more accurate.

Expectation

Expectation polling can
polling can have higher
be biased variance

weight samples inversely proportional to their degree - then unbiased

® Mean number of friends are smaller than mean number of friend of
friends (Feld 1991 - friendship paradox).

® Respondent Driven Sampling: snowball MCMC sampling method
for marginalized populations in social networks.
US Centers for Disease Control and Prevention: HIV drug users.
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SUMMARY

Part I. Social Learning. Learn from observations, past
decisions and others [Psychology, Economics, CS,EE]
Herding and Data Incest yield non-informative datasets.

This presentation is highly simplified and omits several
important areas:

Dynamic Coherent Risk Measures

Homophily vs Contagion

Dynamics of viral marketing:

Revealed Preferences:Are humans utility maximizers?

UBC

-
-4
-.;

(@)
NS

17



SUMMARY

Part I. Social Learning. Learn from observations, past

decisions and others [Psychology, Economics, CS,EE]
Herding and Data Incest yield non-informative datasets.

This presentation is highly simplified and omits several
important areas:

Dynamic Coherent Risk Measures

Homophily vs Contagion

Dynamics of viral marketing:

Revealed Preferences:Are humans utility maximizers?

17

Abusive re-use of information

(1,1) (1,2) (1,3)
e > e — 5

®* —— > o — > @
2,1 (2,2) (2,3)




SUMMARY

Abusive re-use of information

(1,1) (1,2) (1,3)
o o ©

Part I. Social Learning. Learn from observations, past
decisions and others [Psychology, Economics, CS,EE]
Herding and Data Incest yield non-informative datasets.
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; : 3 Sampled infected agents
Part 2. Diffusion in Large Scale Networks.
Mean field dynamics: infected degree distribution satisfies *

differential equation
Sampling: Expectation Polling, Respondent Driven Sampling

This presentation is highly simplified and omits several

important areas:

Dynamic Coherent Risk Measures

Homophily vs Contagion

Dynamics of viral marketing: Markov state 6,
Revealed Preferences:Are humans utility maximizers? sentiment
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