21st Century library: Next Era Biological Data Hurdles for Information Storage, Access, Distribution and Preservation

Richard Slayden, PhD.

Microbiology, Immunology & Pathology
Center for Environmental Medicine

Evolution of the laboratory notebook: From recording to logging

Example of data explosion: Traditional sequencing

source: robotics.stanford.edu/~serafim/cs262/Spring2003/Slides/Lecture9.ppt

Example of where data is coming from: Next Generation Sequencing Technology

reconnoingy

Examples of biological data: Not limited to genome sequencing

- ✓ Reference or *De Novo* Genome sequence data
- ✓ Resequencing/SNP Analysis
- ✓ Whole Transcriptome/small RNA/microbial RNA/human RNA
- ✓ Epigenetics
- ✓ Gene Essentiality
- ✓ Metagenomic studies

Integration of data: Genome Analysis-Genome structure and arrangement

Capturing and Updating Biological information and Function

	Francisella tularensis Holarctica	Francisella tularensis
Strain	LVS	Schu4
Accession		
Build		2002-9-12 in 37 contigs
Bases	1895998	1798384
GC%	32.15	
ORFs	2109	2056
Duplicate ORFs	132	90
Bases/Orf	899	875
Unique ORFs	1977	1966
Masking Genome		
Fraction masked		
Francisella tularensis Holarctica strain LVS	1	0.9641739
Francisella tularensis strain Schu4	0.9830348	1
Proteins at e=0		
Francisella tularensis Holarctica strain LVS	0	3
Francisella tularensis strain Schu4	2	0
Proteins at e=1e-75		
Francisella tularensis Holarctica strain LVS	0	20
Francisella tularensis strain Schu4	6	0

RESOLUTION OF DATA-UNIQUE DATA FROM A SINGLE INFECTION

IDENTIFICATION OF NEW GENOMIC INFORMATION: Assignment of Function

Non-annotated open reading frames

Example of data explosion: Next Generation Sequencing

2001 First human genome sequence draft: ~ 13 years and 300 million US\$

Technology Review
May 2005: ~ 6 month and 20 to 30 million US\$

The Scientist (Vol. 20,2 p.67) 454: ~ 1 month and 900 000 US\$ (1x coverage)

The Scientist (Vol. 20,2 p.67) Solexa: ~ 6 month and 50 000 US\$ (15x coverage)

Published literature using AB SOLiD SOLiD sequencer: 14 days and 20 000 US\$ (~10x coverage)

Proton: 4 hrs- 1,000's bacteria, Human genome (~\$2,000)

Example of data explosion: METAGENOMICS ANALYSIS

Keep in mind that much of the data analysis software available today was not really designed for NGS-scale metagenomic datasets.

For example, simple sequence alignments for a metagenomic dataset with "only" 25M reads against a "small" database with only 1,000 records is 25 billion alignments.

On a fast server with 10 alignments per second per CPU that's about 290,000 days. If you run this on a 1,000 core cluster it's 290 days.

Substantial horsepower, or some data reduction methods, or fairly small highly targeted databases, to make feasible runs.

MEGAN is a current analysis solution and you can also install it on your workstations; it's free. However, MEGAN needs 64GB RAM and multicore (about 8-core) to handle metagenomic-sized datasets.

A metagenomics data analysis pipeline is in place for handling NGS sequence data. It's available to anyone using the CSU sequencers.

Complexity of the data set: From the Bench to the Data

Workflow & complexity of the information required

Next Generation Sequencing: Complexity of the data set

- ✓ Scientific Applications-Genome sequencing, whole transcriptome, modifications, structural variations
- ✓ Workflow: Material type (ie. DNA or RNA) & sample preparation (Total RNA vs mRNA)
- ✓ Workflow: library preparation & sequencing run-mate-pair or fragment
- ✓ Computational Resources: Reference or de novo sequence assembly
- ✓ Data reduction: Data Analysis- What portion of the data is analyzable, condensation, biologically relevant criteria
- ✓ Secondary comparative analysis-Applied analysis, incorporation with historical data

Current Data issues

Current Data Storage:

- ✓ Individual local computers or servers
- ✓ Not readily accessible by multi local investigators
- ✓ Not accessible by outside collaborators
- ✓ Not routinely backed-up
- ✓ Deletion of large raw data sets
- ✓ Data cannot be integrated into multi-investigator programs

Beyond a single laboratory-Data access between experimental sites

Foothill Campus

Beyond a single laboratory-interaction between experimental sites

Beyond a single laboratory-interaction between experimental sites

CURRENT DATA MANAGEMENT & PRESERVATION STRATEGIES USED BY BIOLOGISTS

Data Management

Data Preservation

What experimental data makes up information?

Current data issues

- ✓ Sequencing: 1-400 genomes (bacterial)
- √ Analysis: reference annotation vs re-annotation
- √ Source of data: Historical data or newly generated
- ✓ Integration of biological information, data complexity and "version"

Envisioned Support Needs

- 1. Data Storage-maintenance, cost, updating hardware, backup, secure, dynamic
- 2. Facilitate access to data files-from remote locations and software-software integration
- 3. Movement of data-without corruption more important than speed
- 1. Distribution of data files-across the US and beyond
- 2. Automated work processing-send data from remote location and analysis
- 3. Modern Help Desk-move beyond software updates and wireless mouse
- 4. Facilitate the development of the COLLABORATIVE LABORATORY NOTEBOOK

Envisioned Needs in context of the BIOLOGIST:

- 1. Data Storage-where is the data
- 2. Access & maintenance-has it been changed, if so in what way, and by who, and for what reason
- 3. Access to data files-interface with data for manipulation and data analysis & output
- 4. Distribution of data files-Provide data in "universal" format where state of analysis is embedded and can be integrated with other data
- 1. Compatibility of analytical software and future interfaces

The 21st Century Library

Problem solving in 3 phases:

- 1. Information gathering
 - a. ISTeC
 - b. ISTeC committee
 - c. Surveys
 - d. collaborators
- 2. Assessment & validation
 - a. Develop a plan-Initiatives 1-4
 - b. Provide committee report document-
 - c. Roll-out to faculty-data management forum & exit survey
- 3. Implementation-present to 2020 vision.

The 21st Century Library-current state

"The Initiatives" a biologists perspective

- 1. Affinity Groups-misery loves company
 - a. Crowd sourcing strategies & approaches
- 1. Education-who, what, where, when & WHY
- 1. Physical infrastructure-*Library of the 21st century*
- 1. Administrative framework-Facilitation, and sustainable (not regulation)

Note: bioinformatics/comp-bio is not included

The 21st Century Library-proposed path forward

"Action plan" from my perspective

- 1. Build on ISTeC Committee report
- 2. Roll-out to faculty (forum)-get feed back (exit survey)
- 3. Prioritize initiatives based on faculty feed back identify others
- 4. Organize around initiatives
 - i. Identify key people willing to participate
 - ii. Envision the future demand & expectations
 - iii. Cost
- 5. Implementation-Time frame for achievement [Sparc & Vision 2020]
 - i. Centralized or decentralized model or hybrid (University/Colleges)
 - ii. Centralized funding or DC from investigators (fee for service) comb

thoughts?

Are these the most appropriate initiatives (1-4)?

Other initiatives?

Follow-up opportunity.

Follow-up opportunity.

Other initiatives?

